2011 (32)
2014 (53)
2016 (53)
2017 (55)
2018 (98)
2019 (88)
2020 (67)
2021 (80)
2022 (133)
2023 (156)
戴榕菁
昨天因为那个27经过考拉兹变换之后似乎要发散似的,于是我就用我前几天在“一次彻底失败之成功”一文中发表的关于考拉兹数的一般表达式,进行了分析,在分析过程搞错了一个系数,以为出现了奇点,但当时以我手头的条件一时无法验证,所以就匆匆写了一篇“又推翻了?真的假的?”。当然,我并不指望真有义士会来帮我验算,只不过是死马当做活马医而已,万一有义士跳出来,不就可以省我很多力气。
不过,随后我想到了我的老本行:web development。尽管这么多年没干了,那些html,javascript早已忘得哩哩啦啦了,但捡起来还算快,反正不需要什么复杂的程序,只要最简单的计算即可。有了这个工具后,我很快在107步处得到了收敛值,这对于我前两天用手算和微软的Excel来说,是根本不可能做到的。。。。唉,所以说工具还是很重要啊。不管怎么说,闹出乌龙总要说声对不起。。。。同时,我也找出了我在解析分析时的错误。所以我就想着这下应该是真的彻底和考拉兹说bye bye了。
可是,如我之前在“一次彻底失败之成功”一文中提到的,考拉兹问题之所以具有诱惑力是因为每一步失败后都会让你似乎看到下一步的希望。刚因为知道27并不发散而想彻底收手的时候,突然又冒出了一个主意。。。。27这个例子似乎是在告诉我:在我给出了考拉兹数的一般表达式之后,证明考拉兹猜想就可以变为证明那个一般表达式既不发散,也不存在奇点或死循环。。。。
嘿,好像又有一线曙光。。。。不过,我近期是不打算再去碰它了,如果别人谁有兴趣,我鼓励。。。。
1)文中所说的“在我给出了考拉兹数的一般表达式之后,证明考拉兹猜想就可以变为证明那个一般表达式既不发散,也不存在奇点或死循环”这句话是不对的。。。。因为那样只能说明考拉兹数是收敛的,而不能证明考拉兹数的全部覆盖了自然数的全部。
2)我收回“如果别人谁有兴趣,我鼓励”这句话,而改为:奉劝大家没事最好别碰考拉兹。。。。