戴榕菁
在爱因斯坦1905年发表里程碑式的“Does the Inertia of a Body Depend Upon Its Energy-content?”【[1]】之前已有一些牛人们纷纷提出E=mc2或者E=a mc2 (a为系数)。其中最牛的当然要数据说是最早推导出E = 4/3mc2的汤姆逊(J. J. Thomson),也就是用汤姆逊云室发现电子的那个英国牛人。但据说他的论证比较粗糙,所以搞出椭球体的美国牛人海维赛德对他的推导过程进行了修改,但结果仍是E = 4/3mc2【[2],[3]】。这两个人的推导我都没找到,不过我发现海维赛德喜欢整理他人的推导或推导结果。今天大家熟知的麦克斯韦方程据说不是麦克斯韦当初得出的形式,而是海维赛德整理后的形式,因此也常被称为麦克斯韦-海维赛德(Maxwell-Heaviside)方程。这或许因为海维赛德与其他牛人不同,他是一位电气工程师,比起不拘小节的物理学家们来,工程师更注重形式的规范整齐。而文献【3】中更是声称海维赛德在1889年就直接用了E = mc2,但是我查不到海维赛德在1889年的相关原文。
文献【2】中提到那位长期与爱因斯坦辩论的亚伯拉罕(Max Abraham)也得出了E = 4/3mc2,我没找到亚伯拉罕的原文,却在另一位牛人的文章中看到了引用亚伯拉罕的文章。那位牛人叫做Hasenöhrl,我试着谷歌上找到他的名字中译文,结果是“兔子伯爵”。Hasenöhrl在1904年推导出m = (8⁄3)E/c2,但后来在亚伯拉罕的建议下他将结果改为E = 4/3mc2【[4]】,在文献【4】的参考文献中Hasenöhrl给出了亚伯拉罕的相关文章【[5]】,但我在网上找不到该文。
还有一位牛人,名叫Preston,他在1875年(比汤姆逊还早)在他的书“Physics of the Ether”【[6]】中给出了下面这段话:
【To give an idea, first, of the enormous intensity of the store of energy attainable by means of that extensive state of subdivision of matter which renders a high normal speed practicable, it may be computed that a quantity of matter representing a total mass of only one grain, and possessing the normal velocity of the ether particles (that of a wave of light), encloses a store of energy represented by upwards of one thousand millions of foot-tons, or the mass of one single grain contains an energy not less than that possessed by a mass of forty thousand tons, moving at the speed of a cannon ball (1200 feet per second); or other wise, a quantity of matter representing a mass of one grain endued with the velocity of the ether particles, encloses an amount of energy which, if entirely utilized, would be competent to project a weight of one hundred thousand tons to a height of nearly two miles (1.9 miles).】
这段话被认为等价于E = mc2。该书可在https://books.googleusercontent.com下载,但我这里无法给出下载链接,因为每次下载的链接好像都不一样。感兴趣的人可以自己去搜索下载。
还有一个牛人比Preston还早,名叫Mayer,他在1867年就直接说出表示E = mc2的下面这段话【[7]】:
【If a mass M, originally at rest, while traversing the effective space s, under the influence and in the direction of the pressure p, acquires the velocity c, we have ps = mc2. Since, however, every production of motion implies the existence of a pressure (or of a pull) and an effective space, and also the exhaustion of one at least of these factors, the effective space, it follows that motion can never come into existence except at the cost of this product, ps = mc2. And this it is which for shortness I call ‘force’】
不过他的逻辑很奇怪,而且量纲也很混乱。
还有一位名叫Olinto De Pretto的牛人在1903年在他的“宇宙生命中的以太假说(IPOTESI DELL'ETERE NELLA VITA DELL'UNIVERSO)”一文中也直接说出含有E = mc2的下面这段话【[8]】:
【Ma tale deduzione ci conduce a delle conseguenze inattese ed incredibili. Un chilogrammo di materia, lanciato con la velocità della luce, rappresenterebbe una somma di tale energia da non poterla nè anche concepire.
La formula mv2 ci dà la forza viva e la formula ci dà, espressa in calorie, tale energia.
Dato adunque m = 1 e v uguale a trecentomila chilometri per secondo, cioè 300 milioni di metri, che sarebbe la velocità della luce, ammessa anche per l'etere, ciascuno potrà vedere che si ottiene una quantità di calorie rappresentata da 10794 seguito da 9 zeri e cioè oltre dieci milioni di milioni.
A quale risultato spaventoso ci ha mai condotto il nostro ragionamento? Nessuno vorrà facilmente ammettere che immagazzinata ed allo stato latente, in un chilogrammo di materia qualunque, completamente nascosta a tutte le nostre investigazioni, si celi una tale somma di energia, equivalente alla quantità che si può svolgere da milioni e milioni di chilogrammi di carbone; l'idea sarà senz'altro giudicata da pazzi.】
文中的v就是我们通常用c表示的光速。上面这段话用谷歌翻译成中文为:
【但是这种推论会导致我们意想不到和难以置信的后果。 以光速发射的一公斤物质所代表的能量之和,我们甚至无法想象。
mv2 公式给了我们生命力,公式给了我们以卡路里表示的能量。
因此给定 m = 1 和 v 等于每秒三十万公里,即 3 亿米,这将是光速,以太也承认,每个人都可以看到我们得到了 10794 表示的卡路里数量后面跟着9个零就是千万以上。
我们的推理使我们得出什么可怕的结果? 没有人会轻易承认,储存和潜藏在一公斤任何物质中,完全隐藏在我们所有的调查之外,隐藏着这样的能量总和,相当于数百万和数百万公斤煤炭可以开发的数量; 这个想法无疑会受到疯子的评判。】
当然,Olinto De Pretto在1903年的这段话是在另一位大名鼎鼎的牛人庞加莱于1900年严格推导出等价于E = mc2的公式【[9]】之后,所以不排除他是受到庞加莱的影响。
结束语
列举了这么多在1905年之前推出或说出E = mc2或与之相近的公式的牛人之后,我们可以看出不但他们的结果都错了,而且无法从他们得出相关结果的过程中得出正确的结果。相比之下,爱因斯坦比他们都更牛,因为由爱因斯坦提供的推导,只要放弃错误的洛伦兹变换,就可按我在前两天的推导【[10],[11]】来得出下面这个正确的结果:
E = mc2/2
。。。。。。
我猜看到这里,很多人开始在心里打嘀咕了:“所有的其他人(而且都是名气爆棚的人)都要么得出E = mc2要么得出E = 4/3mc2,最关键的是那么多著名的牛的爆棚的人都得出与爱因斯坦一样的E = mc2,而且还有NIST背书,你这个无名人之辈得出的E = mc2/2恐怕是有问题的了。”
那好吧,我只能说咱们就走着瞧吧。关键是我认为除了用到由错误的洛伦兹变换得出的所谓的计算光能的相对论多普勒效应之外,爱因斯坦的推导质量-能量关系的逻辑是正确严格的。
唉,这些年来我早已习惯了和大多数人持不同意见的状态了,也不多这一件。
我只是要再强调一遍:真正正确的质量-能量关系是:
E = mc2/2
咱们走着瞧。。。。。。
[[1]] Einstein, A. (1905a). “Does the Inertia of a Body Depend Upon Its Energy-content?”. Retrieved from: https://www.fourmilab.ch/etexts/einstein/E_mc2/e_mc2.pdf
[[2]]Rothman, T. (2015). “Was Einstein the First to Invent E = mc2?”. Retrieved from: http://www.naturalphilosophy.org/site/harryricker/2015/05/23/the-origin-of-the-equation-e-mc2/
[[3]]Ricker, HH. (2015). “The Origin of the Equation E = mc2”. Retrieved from: http://www.dankalia.com/delloro/gravity-cone/The%20Origin%20of%20the%20Equation%20E%20=%20mc2.htm
[[4]] Hasenöhrl, F. (1904). “On the Theory of Radiation in Moving Bodies. Correction”. Retrieved from: https://en.wikisource.org/wiki/Translation:On_the_Theory_of_Radiation_in_Moving_Bodies. Correction
[[5]] Abraham, M. (1904). Ann. d. Phys. 14. p. 244. 1904.
[[6]] Preston, S. T. (1875). “Physics of the Ether”, E. & F. N. Spon, London, 1875, #165
[[7]] Mayer, J. R. (1867) “Remarks on the Mechanical Equivalent of Heat,” The Correlation and Conservation of Forces, translated by J. C. Foster, pp. 331, 336
[[8]]OLINTO DE PRETTO, DD. (1903) “IPOTESI DELL'ETERE NELLA VITA DELL'UNIVERSO”. Retrieved from: http://www.cartesio-episteme.net/st/mem-depr-vf.htm
[[9]] Poincaré, H. (1900). The Theory of Lorentz and The Principle of Reaction. Retrieved from: http://www.physicsinsights.org/poincare-1900.pdf
[[10]] 戴榕菁 (2023)没了洛伦兹,能量减半。。。。
[[11]] 戴榕菁 (2023)关键是如何计算多普勒效应
Oliver Heaviside FRS(1850年5月18日-1925年2月3日)是英国自学成才的数学家和物理学家,他发明了求解微分方程的新技术(相当于拉普拉斯变换),独立发展了向量微积分, 并以当今常用的形式重写了麦克斯韦方程组。 在麦克斯韦死后的几十年里,他极大地塑造了人们理解和应用麦克斯韦方程组的方式。 他提出的电报员方程式在他有生之年就具有重要的商业意义,此前很长一段时间人们都没有注意到这些方程式的重要性,因为当时很少有人精通他的新方法。 尽管 Heaviside 在他一生的大部分时间里都与科学机构不一致,但他改变了电信、数学和科学的面貌。
我比较欣赏这句话“在他一生的大部分时间里都与科学机构不一致”,呵呵,好样的!
Oliver Heaviside FRS[1] (/?h?visa?d/; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, and rewrote Maxwell's equations in the form commonly used today. He significantly shaped the way Maxwell's equations are understood and applied in the decades following Maxwell's death. His formulation of the telegrapher's equations became commercially important during his own lifetime, after their significance went unremarked for a long while, as few others were versed at the time in his novel methodology.[2] Although at odds with the scientific establishment for most of his life, Heaviside changed the face of telecommunications, mathematics, and science.[2]