IMO 和 Marathon 两不误

学习数学,开发智力; 每天长跑,锻炼身体。
正文

做一道题目, 学一个公式 (2)

(2014-01-03 13:34:55) 下一个

做一道题目, 学一个公式, 每一颗子弹消灭一个敌人!

[问题]: A vertex of a Tetrahedron is called trirectangular if all edges of the vertex are perpendicular to each other. Let ABCD be a tetrahedron with A trirectangular. Area [ABC] = 15, [ACD]=16, [ABD]=240. What is the area of [BCD]?





问题来源:http://groups.wenxuecity.com/groups/bbs.php?act=bbsview&gid=1731&basecode=968444
Picture was drawn by ca981.

[学一个公式] 有类似戈股定理的关系:
[BCD]^2 = [ABC] ^2+  [ACD]^2 + [ABD]^2


公式证明 (by student99 http://groups.wenxuecity.com/groups/bbs.php?act=bbsview&gid=1731&basecode=968444)

发表于: 2013-12-17 09:19:22 [引用]
我想6700417所说的公式可以这样证明:

假设三个面积分别是a, b, c. 那么三个垂直边则分别是:sqrt(2abc)/a, sqrt(2abc)/b, sqrt(2abc)/c. 所以ABCD的体积是sqrt(2abc)/3.

假设A 是原点,三条垂直边分别是x, y, z轴。那么平面BCD 的方程就是:ax + by + cz = sqrt(2abc), 根据点到平面的公式,我们可以求出A 到 BCD 的距离:sqrt(2abc)/sqrt(a^2 + b^2 + c^2)

由此得出:[BCD] * sqrt(2abc)/sqrt(a^2 + b^2 + c^2 ) * 1/3 = sqrt(2abc)/3.

所以 [BCD]^2 = a^2 + b^2 + c^2 .
[ 打印 ]
阅读 ()评论 (0)
评论
目前还没有任何评论
登录后才可评论.