《量子江湖风雨录》(2)
5。
1897年,英国剑桥的物理学家汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。汤姆逊就假设了一个原子的结构模型。后来到了1910年姆汤逊的门生卢瑟福在曼彻斯特做教授,由于实验中的新发现,不满意恩师的模型而提出了自己的新原子模型,既“行星系统原子模型”。
这个新模型,他假设,有一个占据了绝大部分质量的“原子核”在原子的中心。而在这原子核的四周,带负电的电子则沿着特定的轨道绕着它运行,像一个行星系统(比如太阳系),原子核就像是我们的太阳,而电子则是围绕太阳运行的行星们。
但其他物理学很快就发现这个新模型有致命的缺陷。因为如果他的模型是正确的话,那么他要面对一个不可能的结果,那就是,“带负电的电子绕着带正电的原子核运转,这个体系是不稳定的。两者之间会放射出强烈的电磁辐射,从而导致电子一点点地失去自己的能量。作为代价,它便不得不逐渐缩小运行半径,直到最终‘坠毁’在原子核上为止,整个过程用时不过一眨眼的工夫。换句话说,就算世界如同卢瑟福描述的那样,也会在转瞬之间因为原子自身的坍缩而毁于一旦。原子核和电子将不可避免地放出辐射并互相中和,然后把卢瑟福和他的实验室,乃至整个英格兰,整个地球,整个宇宙都变成一团混沌”。
但我们的世界并没有坍缩,是卢瑟福的原子结构模型有大问题,却不能解决。这时年轻的丹麦籍留学生玻尔,来到了卢瑟福的实验室,对这个原子模型难题产生了很大兴趣。正是以这个问题为契机,玻尔走上了量子革命的不归路。
作为年轻的革命青年,玻尔从一开始就把目标定在了量子假设这一目标上,他要用快速发展起来的量子观念研究原子模型。到1912年他就发表了自己的第一篇关于原子结构方面的论文,虽然后来证明这篇论文并不那么有意义,但量子革命的火种从此在玻尔的心里扎下了根。
他在同年完成了学业,回到了丹麦的哥本哈根,在那里他开始创造哥本哈根学派在量子革命中辉煌。
6。
玻尔在原子模型上遇到的困境和爱因斯坦在光电效应难题上遇到的困境在思想方法上有非常相似的地方,那就是是否要放弃伟大的麦克斯韦和他的伟大理论–电磁理论。玻尔毅然决然地选择了放弃电磁理论和他的创立者。
年轻的玻尔很有直觉和敏锐的洞察力,他非常善于捕捉那些在别人看来不起眼但却真正有价值的东西。
一次偶然的机会,玻尔认识的一个人与玻尔谈起了原子光谱的问题,那人说原子光谱虽然繁多,但有一定规律可循,瑞士的一位数学教师巴尔末就从中总结出了一个简单明了的公式,其中有一个至关重要的数N是大于2的正整数。
这是一个经验公式,从来没有人知道这个公式背后隐藏的含义,也不知道用什么理论才能推导出这个公式。但当玻尔看到这个公式后,他一下惊呆了,他马上就把巴尔末公式与普朗克提出的能量的量子化公式联系了起来。很快他就形成了一个革命性的想法:“原子内部只能释放特定量的能量,说明电子只能在特定的‘势能位置’之间转换。也就是说,电子只能按照某些‘确定的’轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来”,而这些能级是离散的,量子化的,被神秘的规律控制着。
随后他把这种量子化的大胆设想转化成了理论推导和数学方程,一举发表了三篇论文论原子结构的量子化解释,于1913年发表在了《哲学杂志》上。玻尔完成了量子革命的第三部曲,使得量子革命走到了青年时期,尽管还没有完全摆脱旧的经典体系,但她已经显示了震惊世界的力量。
玻尔推导的公式完全符合巴尔末经验公式描述的原子谱线,其跟实验误差仅为千分之一。玻尔的公式更预测了一些新的谱线,后来都得到了实验的证实。而且,玻尔的理论描述的更多,解释力达到了空前的程度。他后来在1922年以他的量子化原子理论获得了诺贝尔奖。
但在当时,这个理论却不被正统的物理学界接受,有物理学家公开表示“如果这些要用量子力学才能解释的话,那么我情愿不予解释。”另有人声称,要是量子模型是真实的话,他们宁愿退出物理学界。因为,他们觉得玻尔的理论有推翻传统电磁理论的企图。但玻尔的量子化原子理论是那样的成功,两年后就被大家普遍接受了。
玻尔的理论虽然很成功,却仍然不能完全取代麦克斯韦的电磁理论。在被迫无奈的情况下,玻尔企图调和他的量子理论与经典的电磁理论,提出了一个折衷的“对应”模型。他折衷的对应模型注定是短命的,因为量子革命的大潮不能容许这种妥协。
从根本思想上,量子化的离散性与传统的连续性是对立的,而且,玻尔的量子化原子结构理论体系已经蕴藏了“随机性”这个不见容于经典力学的重大思想。在玻尔的量子化体系中,我们不能判断一个电子何时何地会发生跃迁,从一个能级到另外一个能级,它是自发的,它表现为一种理论上不可能描述的随机过程,而这个过程不同于一般的随机过程。一般的随机过程,是有原因的,只是我们没有足够的信息描述这种原因,但理论上不排除描述的可能性。而玻尔量子化原子结构中电子的跃迁的随机性是无因之果,是自发的,至少从理论上没有计算电子跃迁条件的可能性。这实际上是在冲击传统的因果律,是相当严重的问题。
据说1919年,当时量子物理的三大巨头,玻尔,普朗克和爱因斯坦,聚集柏林就这个问题进行了探讨。爱因斯坦对玻尔理论中冲击因果律的反叛思想大为不满,也埋下了玻尔与爱因斯坦这两位科学巨匠长达几十年大辩论的种子。
正因为这样,玻尔折衷理论的短命就是是不可避免的,而玻尔也最终跨过了他那个折衷理论的尸体,领导他的团队创立了量子革命正宗的“哥本哈根”学派。1921年哥本哈根物理研究所成立,36岁的玻尔任所长。那些在量子力学中赫赫有名的大师们,就要正式登场了,他们将演绎一场惊心动魄的量子江湖战争。
7。
首先登场的叫德布罗意,一个法国物理学家曾经师从鼎鼎大名的朗之万。就是这个德布落意,在玻尔量子化原子结构理论遇到困境时,提出了一个革命性的设想,把电子也纳入了波动的范畴,后来成为爱因斯坦阵营的一员猛将,与玻尔的哥本哈根阵营拼死角斗。
前面说到玻尔的量子化原子结构模型虽然取得了巨大的成功,为量子革命立下了汗马功劳,但他的理论还不足以替代经典的麦克斯韦电磁理论,迫使玻尔走与电磁理论的折衷路线。
正是在这种困境中,德布罗意剑走偏锋,力图完全甩开麦克斯韦的电磁理论,考虑如何能够在玻尔的原子模型里面自然地引进一个周期的概念,以符合观测到的数据。而这个条件在玻尔的模型里是被是强加在电子的量子化模式里的,不是理论的推导。
德布罗意的思想很奇特。他从爱因斯坦的相对论出发,开始推论:把爱因斯坦的相对论用到电子身上,爱因斯坦相对论的著名公式把电子的能量与电子的质量和光速连接了起来,而普朗克著名的能量量子化公式又把能量和频率连接了起来,这样把两者一合并,用公式一推导,对一个电子来说,就有一个内禀的频率与之相随相伴。
这样就不得了!德布罗意继续推算,电子有一个内禀的频率,可以换算成电子在运行时必定伴随一个波!
结果便开始令人震惊了。
在此之前,无论是经典力学还是玻尔的量子化原子理论,都把电子看作是一个粒子,天经地义。但到了德布罗意这里,怎么七拐八拐把电子跟波扯到一块去了?这不麻烦大了吗?在前面,我们看到爱因斯坦反叛传统,用量子化思想挑战传统认定的光的波动性,引出了光的粒子性,使得光的波- 粒对决空前火热,气氛相当火爆。而在光特性上的大战硝烟正浓的时候,德布罗意却在电子上把电子引向了波动的特性上来。
如果说光的波-粒大战已经够麻烦的了,那么电子的波-粒大战一定是不可收拾的烂摊子,因为电子是构成我们整个实实在在的宏观物质的一种微观粒子啊!当然,在后面我们可以看到,量子革命把构成实在物质的所有微观粒子都拉入了这一范畴,发动了名符其实的世界大战。
伴随电子的这种波,后来被成为“德布罗意波”,尽管它的速度可以比光速快很多,但据说由于这种波被德布罗证明不携带能量和信息,所以不违背爱因斯坦相对论。
当德布罗意宣布他的理论说明电子是个波的时候,几乎没人相信。德高望重的物理学大师们,为年轻一辈的反叛精神而大摇其头,直呼“人心不古,世道乱了”。据说德布罗意的恩师朗之万也对弟子的出格很伤脑筋,但还是把弟子的论文转交给爱因斯坦。令人没想到的是,爱因斯坦对德布罗意的理论却给予了高度评价。
有爱因斯坦撑腰,电子的波动性才得到学术界的重视。现在需要是实验证据,证明电子是波。
该当德布罗意成名,后来在1925年美国纽约的贝尔电话实验室的一个失败实验,却奇迹般地证明了电子的波动性,电子能够象光波一样发生衍射图案,其波动性数据与德布罗意的理论符合的非常好。
德布罗意成功了,理论和实验都证明了电子是波。但物理学麻烦了,光到底是波还是粒子?电子到底是波还是粒子?它们都有实验做自己的后盾,都有理论做自己的后盾。各路人马一起加入了这场的火热的大战,战局正酣。但问题是,这场战争怎么收场?
就在这个时候,玻尔哥本哈根阵营的一员猛将,海森保,要扬名立万,威震江湖了。由于海森堡的加入,使得战局更加混乱,更扑朔迷离。
8。
那是1925年,哥本哈根,慕尼黑和哥廷根成为量子革命的“金三角”。无疑哥本哈根是龙头老大,由德高望重的玻尔执掌,聚集了一批精英天才。
当时,海森堡在哥廷根,但跟哥本哈根的玻尔有很深的渊源,并在哥本哈根访问工作过,深受玻尔的赏识,他们关系很密切。
年轻而天才的海森堡决定对量子物理动大手术,彻底改变玻尔量子化原子结构理论的困境。他对当时玻尔的理论提出两方面的革命性思想。
一个是不能把不能观察的想象图像引入到理论中来,其实这也是当时哥本哈根学派内部慢慢出现的一种学术思想倾向。例如在玻尔的量子化原子模型中,就假定电子沿着不同的“轨道”以不同的频率绕原子核运转,而不同“轨道”有不同的能级,电子可以在这些不同能级的“轨道”间随机跃迁。这里海森堡要问的问题,谁证实过电子绕原子核运转的“轨道”?谁证实过电子绕原子核运转的“频率”?
海森堡的第二个革命性思想是,量子力学不同于经典力学,量子力学根本上要从数学来着手建立,而暂时不管其物理图像是什么,在这里,数学说了算。这个思想那是相当地革命。因为我们知道,在经典力学中,我们都是先从物理意义出发,寻求相关物理量之间的关系。例如,我们知道物体的运行速度(假设匀速运动),再知道物体的运行时间,然后我们寻求物体运行的距离等于速度乘以时间来获得距离的关系式。而在量子力学中,海森堡要先把数学描述引进来,然后再去寻求各个变量的物理意义。
这个革命性思想是一个双刃剑,可以给量子革命打开广阔的前景,也会给量子革命带来巨大的困惑。而这里的问题是,不采用这些革命性的思想,量子力学就不能有突破。与其停滞不前,还是先突破为好。
当时海森堡要找出原子结构中能量体系的基本原理,他认为的突破口还应该是研究原子的谱线问题,引入数学的虚振子方法。但当他把电子辐射按照虚振子的代数方法展开时,遇到了数学上几乎难以突破的困难,最后他不得不放弃了这个方向。
被逼无奈,海森堡把眼光放到了电子的运动上,他要通过数学来建立电子在原子中的运动方程,这就是后来称为量子力学的新体系,是相对于玻尔的老理论而言。
作为一个年轻的物理学家,海森堡开始摆弄一种奇怪而神秘的数学形式 - 矩阵。在当时的物理学界,真正懂得矩阵的人并不多,实际上听说过这种数学形式的人都不多。海森堡自己对矩阵也不熟,也在摸索。
无疑,矩阵这种数学形式是艰涩的,令人望而生畏的,至少对当时的物理学家来说。但是,矩阵最大特点是离散化,正好特别适合量子化的思维模式。所以当海森堡将矩阵这种数学形式应用到描述电子在原子内的运动方程时,很快就获得了巨大的成功。
他把所有物理规则都按照矩阵形式书写,把已有的经典动力学方程和许多传统的物理量都按照矩阵数学来处理。在玻尔的量子化原子模型里,已经有了电子的运动方程和量子化条件。原来是用傅立叶变换化作一系列简谐运动的叠加,展开式的每项都代表了特定的频率。现在,海森堡把它们彻底地改变成了矩阵形式。
这样,描述原子中电子的运动就有了一套矩阵数学形式的坚实基础。从海森堡建立的量子力学体系里,可以很自然地推导出量子化的原子能级和辐射频率,不需要象玻尔的模型要强加进去这些东西。更重要的是,量子力学的基本形式已经在海森堡这里得到了突破性的进展,为量子革命的气势磅礴奠定了坚实的数学基础。海森堡建立的量子论基础后来被成为“矩阵力学”,海森堡后来去剑桥讲学,他的革命性工作由他的前辈波恩于1925年寄给了《物理学杂志》得以发表,标志着量子力学体系首次公开亮相。那年海森堡才24岁!
然而,海森堡的“矩阵力学”导致的一个奇特现象令人百思不解,那就是把传统的动量P和位置Q这两个变量写成矩阵形式后相乘所得到的奇妙结果。
在经典力学里,如果要把两个量相乘,就是简单的乘法,与这两个量在乘法中的次序没有关系,这就是乘法的交换律。例如,牛顿第二定律:f= am 和f= ma 是等同的。但在海森堡的矩阵力学里,动量P与位置Q相乘的次序却对结果有很大影响,也就是说,PX Q 不等于Q X P,不遵守乘法交换律。
这给海森堡提出了很大的挑战,质疑矩阵力学的人以此来发起攻击。而海森堡的回答是,量子力学不同于经典力学,在量子力学里,数学压倒一切。既然计算表明动量和位置的乘积与次序有很大关系,我们就应当相信。至于其背后隐藏的意义,再慢慢寻找。也就是说,在量子力学里游戏规则变了,数学前行,物理意义在后。
但人们没想到的是,这个P与Q相乘不遵守乘法交换律的数学背后隐藏着一个惊天大秘密,后来才被证明它就是大名鼎鼎的“测不准原理”。“测不准原理”这个中文翻译有误,容易引起误导,准确地翻译应该是“不确定性原理”(UNCERTAINTYPRINCIPLE)。这是后话。
海森堡离开哥廷根一段时间, 去剑桥讲学。海森堡不在哥廷根的日子里,海森堡的矩阵力学迷住了前辈波恩,波恩很快就找到了与他一起工作的年轻的数学天才约尔当一起合作发表了另一篇论文,《论量子力学》,用大量篇幅来阐明矩阵运算的基本规则,并把经典力学的哈密顿变换统统改造成为矩阵的形式。他们也算出了PX Q 和Q X P 之间的差值。后来,海森堡回来后,他们三人又合作在1925年年底发表了《论量子力学II》,从而彻底建立了新量子力学的主体。
“在这种新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实是牛顿理论的一个扩展,老的经典力学其实被‘包含’在我们的新力学中,成为一种特殊情况下的表现形式。”
新生的矩阵力学一出世,就有雷霆万钧之力,很快就解决了电子自旋的难题,解决有着两个电子的原子——氦原子的问题,其威力很快扩大了前所未知的领域中。注定了要在物理学的历史上留下色彩斑斓的一页。
如果说海森堡将成为玻尔哥本哈根学派的一员猛将的话,那么爱因斯坦阵营也将出现另一员猛将,他就是赫赫有名的薛定谔。薛定谔要推出他的波动方程与海森堡的矩阵理论相抗衡,其威力很快就盖过了海森堡的矩阵理论,而他后来他驯养的“薛定谔的猫”更是令量子江湖中人闻“猫”丧胆,谈“猫”色变。
9。
哥本哈根阵营推出了矩阵力学建立了量子力学的基本体系,威震江湖。爱因斯坦阵营也不是吃干饭,薛定谔出场了。
那时,薛定谔已经是瑞士苏黎世大学的一位知名教授。他不在原子结构里折腾,而是另辟蹊径,很自然地从本阵营的德布罗意“相波”为出发点,建立理论。薛定谔在1925年底对爱因斯坦表达了他对德布罗意工作的极大兴趣和信任,决心创立他伟大的波动力学来与海森堡等创立的矩阵力学一较高下。
薛定谔仔细研究了德布罗意的思想,然后比较了玻尔当年的量子化原子理论和海森堡的矩阵理论。他意识到,玻尔当年是强加一个“电子分立能级”的假设,而海森堡用复杂的矩阵力学推出这一结果。海森堡想,老夫不走你们的路,也不用引入外部假设,只要把电子看成本门的德布罗意波来建立方程,就可大功告成。
薛定谔最后从经典力学的哈密顿-亚可比方程出发,利用数学的变分法和德布罗意方程,求出了一个非相对论的波动方程。后来这个方程成了20世纪威震整部物理学史的薛定谔波函数。
在薛定谔波函数方程里包含波函数,普朗克常数,体系的总能量,势能,等等。该方程的解是不连续的,依赖于整数N,其结果很精确地与实验结果吻合。这样,原子的光谱也同样可以从薛定谔的波动方程里被推导出来。
到1926年6月,薛定谔连续发表四篇重要论文,彻底建立了一种全新的量子力学体系 --- 波动力学,与海森堡等的矩阵力学争霸龙头老大。
薛定谔的波动力学体系,从它一出世,就赢得了物理学界的一片赞扬,守旧的老夫子们,似乎看到了薛定谔的波动力学体系能够回归传统,而其他物理学家则喜欢其体系的形式–微分方程,比起矩真力学的艰涩要可爱多了。爱因斯坦更是称赞薛定谔的体系是“源自于真正的天才”。
也正因为薛定谔的成功,把波-粒大战的战火烧的更加猛烈。因为现在量子力学有了两套完整的理论体系,一个是海森堡等的矩阵力学,它明显地拥抱电子的粒子性;另外一个就是薛定谔的波动力学,它明显地拥抱电子的波动性。在这两种理论的支持下,波-粒大战分外惨烈,大有鱼死网破之势。
尽管矩阵力学和波动力学彼此仇视,互不买账,但似乎它们有一个共同点,就是从数学出发建立理论体系,完全区别于传统的从物理意义出发建立理论(只是波动力学方面更愿意谈论物理图像)。这就给它们带来了一个共同的尴尬,有时不知道自己的理论表达的是什么意思。
在海森堡的矩阵力学里,我们不知道动量P与位置Q不遵从乘法交换律蕴藏着什么稀世珍宝。同样在薛定谔的波动力学里,也没人知道其波动函数隐藏什么惊天秘密。这就导致这轮波-粒大战既惨烈又神秘,而令人惊奇的是,薛定谔用来对抗敌手的波函数最后却成了敌方阵营大厦的基石之一。
后事如何,下回分解
(我最近刚出版了一本书,《理性,启示与结局》(上卷),挺开心。您如果有兴趣,可以点击 https://blog.wenxuecity.com/myblog/82033/202501/10770.html ,谢谢!)