library("ggpubr")
ggscatter(data, x = "CE10", y = "OS",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "CE10", ylab = "OS")
cor.test(formula = ~ CE9 + OS,
data = data,
subset = MFP == "D")
t.test(formula = CE10 ~ MFP,
data = data)
# CE1 CE2 CE3 CE4
BA-5152 0.15368566 0.276724867 0.19438770 0.044953297
BA-5153 0.09342664 0.046838160 0.02334477 0.006748026
BA-5559 0.07732019 0.006907233 0.07898090 0.252107417
round(cor(dat), 2)
#CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CE9 CE10 OS
CE1 1.00 0.12 0.20 0.07 -0.35 0.15 -0.26 -0.60 -0.26 -0.30 -0.08
CE2 0.12 1.00 0.03 -0.10 -0.34 -0.38 0.13 -0.14 -0.34 -0.52 -0.08
CE3 0.20 0.03 1.00 0.02 -0.35 -0.03 -0.35 -0.57 0.28 -0.01 -0.20
CE4 0.07 -0.10 0.02 1.00 -0.06 0.32 -0.42 -0.21 -0.27 -0.25 -0.07
CE5 -0.35 -0.34 -0.35 -0.06 1.00 0.10 -0.05 0.57 -0.19 -0.09 -0.14
CE6 0.15 -0.38 -0.03 0.32 0.10 1.00 -0.23 -0.16 -0.31 0.00 0.00
CE7 -0.26 0.13 -0.35 -0.42 -0.05 -0.23 1.00 0.48 -0.15 -0.17 0.10
CE8 -0.60 -0.14 -0.57 -0.21 0.57 -0.16 0.48 1.00 -0.19 -0.10 0.12
CE9 -0.26 -0.34 0.28 -0.27 -0.19 -0.31 -0.15 -0.19 1.00 0.54 0.07
CE10 -0.30 -0.52 -0.01 -0.25 -0.09 0.00 -0.17 -0.10 0.54 1.00 0.21
OS -0.08 -0.08 -0.20 -0.07 -0.14 0.00 0.10 0.12 0.07 0.21 1.00
ggplot(data) +
aes(x = CE1, y = CE2) +
geom_point(colour = "#0c4c8a") +
theme_minimal()
pairs(dat[, c("CE9", "CE10", "OS")])
library(corrplot)
corrplot(cor(dat),
method = "number",
type = "upper" # show only upper side
)
correlation tests for whole dataset
library(Hmisc)
res <- rcorr(as.matrix(dat)) # rcorr() accepts matrices only
# display p-values (rounded to 3 decimals)
round(res$P, 3)
library(ggstatsplot)
ggscatterstats(
data = dat,
x = CE1,
y = CE2,
bf.message = FALSE,
marginal = FALSE # remove histograms
)
library(correlation)
correlation::correlation(dat,
include_factors = TRUE, method = "auto"
)
#https://statsandr.com/blog/correlation-coefficient-and-correlation-test-in-r/