勒夏特列原理的应用可以使某些工业生产过程的转化率达到或接近理论值,同时也可以避免一些并无实效的方案(如高炉加碳的方案),其应用非常广泛 [2]。
增加某一反应物的浓度,则反应向着减少此反应物浓度的方向进行,即反应平衡向正反应方向移动进行。减少某一生成物的浓度,则反应向着增加此生成物浓度的方向进行,即反应平衡向正反应方向移动进行。反应速率及产率也会因为对外界因素系统的影响而改变。
这可以用氢气和一氧化碳生成甲醇的平衡演示:CO + 2H2? CH3OH。假设我们增加体系中一氧化碳的浓度,应用勒夏特列原理,可以预见到甲醇的量会增加以使得一氧化碳的量减少。此观察结果可以用碰撞学说解释,随着一氧化碳浓度的提升,反应物之间的有效碰撞次数增加,使得正反应速率增加,生成更多产物。
升高反应温度,则反应向着减少热量的方向进行,即放热反应逆向进行,吸热反应正向进行;降低温度,则反应向着生成热量的方向的进行,即放热反应正向进行,吸热反应逆向进行。
在判断温度对于平衡的影响时,应当把能量变化视为参加反应的物质之一。例如,如果反应是吸热反应,即ΔH>0时,热量被视为反应物,置于方程式左边;反之,当反应为放热反应,即ΔH<0时,热量被视为反应物,置于方程式右边。在放热反应中,温度的增加会导致平衡常数K的值减小;反之,吸热反应的K值随温度增加而增加。
压力同样仍是朝消除改变平衡因素的方向进行反应。增加某一气态反应物的压强,则反应向着减少此反应物压强的方向进行,即反应向正方向进行。减少某一气态生成物的压强,则反应向着增加此生成物压强的方向进行,即反应向正方向进行。反之亦然。
以著名的哈伯法制氨反应为例:N2(g) + 3H2(g) ? 2NH3(g)。反应的左边和右边的系数不一样,所以当平衡后压力突然增加,反应会朝向气体系数和气体体积较小的方向进行,在此例中也就是朝向增加NH3的方向进行。反之如果平衡后压力突然减小,反应会朝向气体系数和气体体积较大的方向进行,故每两分子NH3将会分解成一分子N2和三分子H2。
但是当气体反应物和气体生成物的系数和相同时系统平衡则不受外界的压力改变而变,如一氧化碳与水在高温下反应形成二氧化碳和氢气的反应:CO2(g) + H2(g) ?CO(g) + H2O(g)。不论外部压力如何改变,将不会影响平衡的移动。
惰性气体(稀有气体)的影响:
1、若反应前后不允许容器体积变化,则反应物与生成物浓度不变,压强同时增加,反应平衡不变。
2、若反应前后允许容器体积变化,加入惰性气体后容器体积增大,此时相当于减少了反应物与生成物的浓度,反应继续向气体摩尔量多的一侧进行。
若是加了在化学式中的气体,会以浓度来影响化学平衡的左右。
仅改变反应进行的速率,并不影响平衡的改变,即对正逆反应的影响程度是一样的。