小波(Wavelet)乐园

小波分析的基础知识, 小波分析的软件实现, 小波分析应用的现状与前景
正文

小波分析系列讲座5

(2004-12-17 04:33:45) 下一个
以图像来说明建立空间特征基和小波变换的关系 设有一幅图像,从不同分辨率考察。 若我们离很远来看,可能会衙?4个点看作一个点,若记此时构成的描述空间为V0. 若走进一些,把16个点看作一个点,记此时构成的描述空间为V1 若再走进一些,把4个点看作一个点,记此时构成的描述空间为V2 若再走进一些,把1个点看作一个点,记此时构成的描述空间为V3 则可知凡是Vi空间内可以描述的图像,Vi+1空间内皆可描述,并且描述的更细致 故Vi包含于Vi+1空间 记Vi+1=Vi+Wi ,即Vi和Wi构成Vi+1空间。(若Vi⊥Wi ,则Wi为Vi的正交补空间,实际应用中不要求一定正交。)( ⊥ 正交) 则Vi+1=Vi+Wi=Vi-1+Wi-1+Wi=…… 记Pi为图像在Vi空间的描述 则Di= Pi+1 - Pi 就表示了图像在这两个描述空间的细节差异,因为Vi+1=Vi+Wi,故Di为图像在Wi空间上的描述。即Wi空间表述了细节差异。如果Wi⊥Wj, 并且在Wj空间中能找到一组正交标准基,其基本函数必是高(带)通的,就称其为小波函数。 Wi⊥Wj正交,即为不同分辨率下的细节差异不相关,从而消除冗余。 那么例子中V3=W2+W1+W0+V0 相应得到  P3=D2+D1+d0+P0 即最清晰分辨率下的图像可以有不同分辨率下的细节差异和最高分辨率下的图像合成而得 由概率特性知细节差异在大范围内是一个较小的值。 如果用上节所引入的频域概念来看,低频信息就是P0,高频为Di,这里的低频和高频就和傅里叶有稍微不同。而从分析中,我们自然而然的知道随着频率的不同,其数值对应的空间窗口大小也不同了。正好满足上节所说。 呵呵,剩下的分析任务就是如何构造Wi
[ 打印 ]
阅读 ()评论 (0)
评论
目前还没有任何评论
登录后才可评论.