J. Am. Huilin Ins. 2011, 11, 1-5
Linus Pauling was awarded the Nobel Prize in chemistry for proving a link between electronegativity and the chemical bond. Pauling defined electronegativity in 1932 as the power of an atom in a molecule to attract electrons to itself [1]. The concept could be considered as an approximation of intuitively understanding the chemical bond strengths. However, the definition is not an unambiguous for the valence states [2-8]. And Pauling electronegativity scales, which based on much less a direct way of description by spectroscopy, unconditionally used and extended the limited situation of the linear difference of the thermochemical energy of two elements (H and Cl) to the all elements. And so that would inevitably mislead to the opposite wrong results [9-11].
Over the years, the attempts to derive a comprehensive quantitative scale of electronegativity have been disappointed because the lack of correlation between the experimental quantities and scale over a wide range of the electron quantum configurations.
In 1981-1982, on the basis of Bohr energy model,
E = - Z2me4/8n2h2?02 = - RZ2/n2
obtained the effective principal quantum number
n* and the effective quantum nuclear charge
Z* from the ionization energy by spectroscopy:
Z*=n*( Iz /R)½
Then the first scale of electronegativity in valence states based on spectroscopy corresponding quantum electron configurations of the orbital from
1s to
nf was proposed [6, 7]:
Xz = 0.241 n*(Iz /R)½/r2 + 0.775
where Iz is the ultimate ionization energy for outer electrons of the
s, p, d and
f orbital of the atom.
R is the Rydberg constant,
R = 2p2µ42e4/h2 = 13.6eV, h is Planck’s constant and
n*(Iz /R)½is the effective nuclear charge
Z* felt by the valence electron at the covalent boundary r.
Built-up the various quantum parameters of the atomic orbital
Iz(s,p,d,f), n*, Z*, rc , rc-1,n*rc-1, based on spectroscopy, the electronegativity
Xz formed a
Method of the multiple-functional
prediction which can explain chemical observations of elements of all orbital electron configurations from
1s to
nf, including the σ-bond, the linear or nonlinear combinations of ionic bond and covalent bond, the orbital spatial overlaps and the orbital spatial crosslinks.Therefore, this is what have been expected orbital ionization energy electronegativity that best meets the Cherkasov conclusion [8] and up to Bergmann-Hinze criterion [9].
After the above electronegativity published we received hundred of appreciation letters and cards [Fig 2]. As they said, there might be no more the confusion of electronegativity. Nobel Laureate Henry Taube wrote in his letter: "Electronegativity continue to be an useful concept, and becomes even more useful when it is treated as a function of oxidation state." [Fig 3}. But Pauling was still in the confusion and continued to maintain his ambiguous valence state [10]: “I must say that I am not able to form a reliable opinion about the value of your work. I note that for a number of the elements your calculated values are close to my values of the electronegativity, and also that for other elements there is a considerable deviation. I suggest that you might discuss some property of the elements, in various compounds, and in different valence states, in order to find out whether or not your values are helpful in understanding the properties.”
To reply Pauling's concerns, the author published two papers “Electronegativities of elements in valence states and their applications” and “A scale for strengths of Lewis acids” [11], wherein 126 metal ion Lewis acids, in various compounds, and in different valence states,are calculated from:
Z = z/r2 - 0.77 Xz + 8.0
Where
Xz is Zhang electronegativity in valence state and z is the charge number of the atomic core (the number of valence electron). Z is Lewis acid strength. The Z values give a quantitative scale of the relative Pearson hardness or softness for various Lewis acids and agree fairly well with the Pearson classification [12] and the previous work [13-17].
Portier et al. [18] and Lenglet [19] published review on Zhang electronegativity and Lewis acid strengths. The Brown Lewis acid strength
Sa [20, 21]
, Portier ICP [22, 23], Lenglet’s RP Relationship[24,25], “Electron-acceptor- Strength” [26,27], Scattering Cross Section Q [28-31] and more applications are derived from Zhang electronegativity. We don’t know if Pauling had no more confusion of electronegativity? But we do know somewhere is still in confusion ofelectronegativity.
Recently, based on the correlation [74-77] between ionocovalency of bond dual nature, the quantum potential term of Schrödinger’s Wave Equation and the spectroscopy data of atom,
I(Z*)C(rc-1) = Ze2/r = n*(Iz/R)½rc-1
that describes the dual properties of the bond strength, the charge density and the ionic potential, Zhang proposed an ionocovalenct orbital hybrid scale IC which can be well used as an absolute electronegativity:
IC = n*(Iz/R)½rc-1
And as an application of ionocovalency, a relative electronegativity IC-potential was also obtained:
Xic =0.412 n*(Iz/R)½rc-1 + 0.387
(The electronegativity scale
Xz can be accounted for IC-force scale [6,7,75] )
Being composed of the ionocovalent dual nature and the built-up quantum potential parameters of all electron configurations from
1s to nf based on the spectroscopy, the scales can quantitatively describe chemical observations of all elements and have more versatile and exceptional applications than the traditional electronegativity scales and molecular properties.
Over the 30 year, as Zhang electronegativity
Xz has been widely quantitatively used [2-9,16-77]
, it might be unnecessary to use ionocovalency as an electronegativity.
Hundreds of appreciation letters and cards for Zhang Electronegativity published
Letter from Nobel Laureate Henry Taube
Reference
[1] Pauling, L.
J. Am. Chem. Soc. 1932, 54, 3570.
[2] Zhang,Y., J. Am. Huilin Ins.,“Covalency result is retrieved by Zhang electronegativity” 2011-11-7
[3] Villesuzanne, A.; Elissalde, C.; Pouchard, M. and Ravez, J.
J. Eur. Phy. J. B. 6 (1998) 307.
[4] Ravez, J.; Pouchard, M.; Hagenmuller, P.,
Eur. J. Solid State Inorg. Chem., 1991, 25, 1107.[5] Mackay, K. M.; Mackay, R. A.; Henderson W.
"Introduction to Modern Inorganic Chemistry", 6th ed., Nelson Thornes, United Kingdom, 2002, pp 53-54.
[6] Zhang, Y.
J. Molecular Science 1 (1981) 125.
[7] Zhang, Y. Inorg Chem. 21 (1982) 3886.
[8] A. R. Cherkasov, V. I. Galkin, E. M. Zueva, R. A. Cherkasov,
Russian Chemical Reviews, 67, 5 (1998) 375-392.
[9] D. Bergmann and J. Hinze.
Angew, Chem. Int. Ed. Engl. 1996, 35, 150-163.
[10] Pauling, L.
a personal letter to Zhang, February 6, 1981.
[11] Zhang, Y. Inorg Chem. 21 (1982) 3889.
[12] Pearson, R. G.,
J. Am. Chem. Soc. 1963, 85, 3533;
J. Chem. Educ.,1968, 45, 581.
[13] Klopman, G.
J. Am. Chem. Soc. 1968, 90, 223.
[14] Yingst, A. and McDaniel, D. H.
Inorg. Chem.1967, 6, 1076.
[15] Aharland, S.
Chem. Phys. Lett., 1968, 2, 303;
Struct. Bond., 1, 207.
[16] Zhang, Y., Proceedings of the 2nd China National Congress of Catalysis, Amoy, 1984, p.G014.
[17] Zhang, Y., Proceedings of the 2nd China National Congress of Catalysis, Amoy, 1984, p.G015.
[18] Portier, J.; Campet, G.; Etoumeau, J. and Tanguy, B.
Alloys Comp.,1994a, 209, 59-64.
[19] Lenglet, M. Iono-covalent character of the metal-oxygen bonds in oxides: A comparison of experimental and theoretical data.
Act. Passive Electron. Compon. 2004,
27, 1–60.
[20] Brown, I. D.
Phys.Chem Minerals, 1987, 15, 30-34.
[21] Brown, I. D.
Acta Cry., 1988, B44, 545-553.
[22] Portier, J.; Campet, G.; Etoumeau, J. and Tanguy, B.
Alloys Comp.,1994b, 209, 285.
[23] Portier, J.; Campet, G.
J. of the Korean Chem.Soc., 1997, 41, 8, 427-436.
[24] Lenglet, M.
Materials Research Bulletin, 2000, Vol. 35 (4) pp. 531-543.
[25] Lebouteiller, A. Courtine, P.
J. Dolid State Chem, 1998, 137, 94.
[26] Wen, S. J.; Campet, G. and Manaud, J. P.
Active and Passive Elec.Comp.,1993, Vol. 15, 67
[27] Wen, S. J.; Campet, G.; Portier, J. and J. Goodenough,
Mat. Science and Eng.,B (accepted 1992)
[28] Marcel, C.; Salardenne, J.; Huuang, S. Y.; Campet, G. and Portier, J.
Active and Passive Elec.Comp.1997, Vol. 19, 217-223
[29] Wen, S. J.; Campet, G.; Portier, J. and J. Goodenough,
Mat. Science and Eng., 1992, B. 14, 115.
[30] Campet, G.; Han, S. D.; Wen,S. J.; Manaud, J. P.; Portier, J.; Xu, Y. and Salardenne,J.
Mat. Sci. and Eng., B (accepted for publication 1995).
[31] Wen, S. J.,
doctoral thesis, University of Bordeaux I, 1992.
[32] Mullay, J.
“Structure & Bonding”, Springer-Verlag Berlin Heidelberg, 66, 1987, pp 1-25.
[33] Luo, Y.-R.; Benson,S. W.
Inorg. Chem.1991, 30, 1676.
[34] Zheng, N. W.; Li, G.-S.
J.Physi. Chem. 1994, 98, 3964.
[35] Zheng, N. W.; Wang, T.; Ma, D. X.; Zhou, T.,
Int. J. Quantum Chem, 2004, 98, 281-290
[36] Feng, C.-J.
Chemical Researches., 1999, 10, 2, 57-63.
[37] Feng, C.-J.
Chinese Journal of Inorg, Chem., 1999, 15, 3, 1-9.
[38] Feng, C.-J.
Chinese Journal of Inorg, Chem., 1999, 15, 6, 835-839.
[39] Feng, C.-J.
Chinese Journal of Inorg, Chem., 2000, 16, 5, 715-720
[40] Yu, D.
J. Chongqing Normal University (Natural Science Ed.), 2006, 23, 3, 1-4.
[41] Li, K. and Xue, D.
J. Phys. Chem. A 2006, 110, 11332.
[42] Li, K. and Xue, D.
Phys. Stat. Sol. (b), 2007,
244, 6, 1982.
[43] Xu, S.-Y.; Song, Z.-P.; M.-Y.; Xue, J.-Y.
Journal of University of Science and Technology of China, 2006, 36, 9, 1015-1020.
[44] Zhu, T.-W.
J. Neimenggu Normal University (Natural Science Ed.), 1983, 2, 22.
[45] Shen, Z. Q.
Chinese Journal of Nature, 1980, 3(9), 658.
[46] Kali, Dsen et al.
Theo Chim. Acta, 1980, 58, 69.
[47] Reguera, E.; Bertran, J. F.; Miranda, J.; Portilla, C.
J. Radioanal. Nucl. Chem., letters,1992, 165 (3) 191.
[48] Reguera, E.; Rodriguez-Hernandez, J.; Champi, A.; Duque, J. G.; Granado, E. and Rettori,C.
Zeitschrift für physikalische chemie, 2006, 220, 12, 1609-1619
[49] Mathew, T. “
Synthesis and characterization of mixed oxides containing cobalt, copper and iron and study of their catalytic activity”, Doctor thesis, University of Pune, Oct. 2002.
[50] Kuei, C.-K.; Lee, J.-F and Lee, M.-D
Chem. Eng. Comm. 1991, 101, pp 77-92
[51] Park Mi-Hyae and ShinYu-Ju,
Journal of the Korean Chemical Society, 2004, Vol.48,
No.1, pp 94-98.
[52] Ilyushin, A. S.; Shi, L.; Leonyuk, L.I.; Mustafa, B.M.; Nikanorova, I.A.; Red’ko,S.V.; Jia, Y.;
Vetkin, A. G.; Zhou, G.; Zubov, I.V.
J. Mater. Res., 1993, Vol. 8, No. 8, Aug, 1791-1797.
[53] Bonnet, A.; Conan, A.; Morsli, M.; Ganne, M. and Tournoux, M.
Phys. Stat. Sol. (b) 1988, 150, 225.
[54] Bih, L.; Allali, N.; Yacoubi, A.; Nadiri, A.; Boudlich, D.; Haddad, M.; Levasseur, A.
Phys. Chem. Glasses,1999,
40,229.
[55] Bih, L.; El Omari, M.; Reau, J. M.; Nadiri, A.; Yacoubi, A.; Haddad, M.
Materials Letters, 2001,
50, 308-317.
[56] Bih, L.; Nadiri, A.; Aride, J.
J. Therm. Anal. Col., 2002,
68, 965-972.
[57] Abbas, L.; Bih, L.; Nadiri, A.; El Amraoui, Y.; Khemakhem, H. and Mezzane, D.
J. Therm. Anal. Col., 2007,
90,453-458.
[58] Bih, L.; Abbas, L.; Nadiri, A.; Khemakhem, H. and Elouadi, B.
J. Molecular Structure. 2007,
872, 1-9.
[59] Abbas, L.; Bih, L.; Nadiri, A.; El Amraoui, Y.; Mezzane, D. and Elouadi, B.
J. Molecular Structure. 2008,
876, 194-198.
[60] Lambert, C.; Kaupp, M. and von Rague Schleyer, P.
Organometallics, 1993,
12 853-859.
[61] Wu, C.; Li, T.; Lei, L.; Hu, S.; Liu. Y, and Xie, Y.
New J. Chem., 2005, 29, 1610.
[62] Dinger, M. B. and Henderson, W.
Journal of Organometallic Chemistry, 1977, 547, 243-252.
[63] Wang B. and Greenblott, M.
Chm. Mater., 1992, 4, 657-661
[64] Martinez-Garcia, R.; Rodriguez, E.; Balmaseda, J. and Roque, J.,
Powder Diffraction,September, 2004, 19(3), 255.
[65] Martinez-Garcia, R.; Reguera, L.; Knobel, M. and Reguera, E.
J.Phys.:Condens. Matter 2007, 19, 056202 (11pp).
[66] Alves, W. A.; Pfaffen, V.; Ortiz, P. I;. Cordoba de Torresi, S. I. and Torresi, R. M.,
J. Braz. Chem. Soc, 2008, 19, 4, 651-659.
[67] Qu, Z.; Zhou, S.; Wu, W.; Li, C. and Bao, X.
Catalysis Letters, 2005, 101,1-2, 21-26.
[68] Hadjtahar, R. B. and Hadjtahar, N. B.
Journal of Materials Science, 2005, 40, 5285.
[69] Martinez-Garcia, R.; Rodriguez, E.; Balmaseda, J.; Ramos, G. and Yee-Madira, H.
Powder Diffraction, September, 2004, 19(3), 284.
[70] Balmaseda, J.; Reguera, E.; Gomez, A.; Diaz, B. and Autie, M.
Microporous Mesoporous Mater. 2002, 54, 285-292.
[71] Fierro J.L.G. “Metal Oxides: chemistry and applications”, CRC Press, Boca
Raton, Fla., USA, 2005, pag. 247-318.
[72]
Zhang, Y., Ionocovalency and Applications 3.Ionocovalent Crosslink Density, J. Am. Huilin. Ins Jul.25, 2011
[73]
Am.Huilin Inst., Zhang Electronegativity, J. Am. Huilin. Ins Jan.31, 2011
[74]
Zhang, Y., Zhang Ionocovalency Contributions, J. Am. Huilin. Ins Dec.11,2010
[75] Zhang, Y. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales.
Int. J. Mol. Sci. 2010,
11, 4381-4406
[76] Zhang, Y.
Ionocovalency, J. Am. huilin. Ins. 2011, 5, 1-11