正文

这人也没引大闫

(2019-05-20 10:22:57) 下一个

这人也没引大闫

这段时间大Yan怼小Yan依然硝烟弥漫,战火未止,小Yan虽然不在城中,但有我这样的虎将帮忙,护颜派也越战越勇,可是我的子弹差不多用完了,今天再让谷小哥帮忙找弹药。

小哥刚才报告,说:皇阿哥,快看,找到了,这人也搞出来GLUT1的结构,样子和小Yan的几乎一模一样,文章里不停地引用小Yan的文,却只字不提大Yan的喇叭,你说这个是不是好弹!

我连忙说:好蛋,好蛋,还是小哥厉害,可惜你马上不能上我的华为手机了,怎么办?小哥说: 没事,你可以搞个苹果玩玩,或者是Samsung,我们在那里见,皇阿哥有办法的。我说:是的,是的,继续合作,别告诉你那天才总统,不然他会把皇阿哥给列入黑名单的。小哥:对,对,不告诉他,皇阿哥忘记了,我可是个川黑。我:啊,我第一次听说。小哥:是的,我是的。好了,不耽误皇阿哥发炮弹了。

送走小哥,我又看了看这文,真是好蛋。一看题目就知道:

Mechanistic Study of Human Glucose Transport Mediated by GLUT1
Xuegang Fu,† Gang Zhang,† Ran Liu,† Jing Wei,*,† Daisy Zhang-Negrerie,§ Xiaodong Jian,∥
and Qingzhi Gao*,†,‡
†Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
‡Tianjin University Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
§Concordia International School, 999 Mingyue Road, Shanghai, 201206, P. R. China
∥National Supercomputing Center in Tianjin, TEDA Service Outsourcing Industrial Park, Binhai New Area, Tianjin, 300457, P. R. China

不仅是好蛋,还是来自祖国的好蛋。一见就亲切,两眼马上泪汪汪的,真是,祖国呀,你真是厉害了,这些高大上的文章都是来自你温暖的怀抱,而且一样的出一篇还不够,硬要出两篇给美国佬和文学城里的我们这些假洋鬼子看看,想气死我们吗?这个不是小华为也是小中兴。

不仅如此,而且这次居然敢又不引用我们大Yan的文章,这不明明是学小Yan硬和我们尊敬的大Yan过不去吗?更有甚者,明明是死体做的,还竟敢恬不知耻地叫“机理研究”(Mechanistic study),一看就Chinglish不讲,这不明明是想气死我们大Yan吗,只有他才能用野路子在活体上做机理的!这次如果他要告你们,肯定有case,别怪我不护你们哈,因为我不知道你们是男是女,长得好不好看,对不起了!

怎么这么似曾相识,这不明明是我们大Yan的喇叭吗?

还有这个,这不是我们大Yan早都预测到的东西吗?而且和小Yan的一模一样,可是小Yan却一个P不放,还不是人家引用了她的东西,没有引用我们大Yan的东西,两个人联合欺负我们大Yan是不是?

该文的参考文献,自己看去:
  • 1.
    ReddyV. S.ShlykovM. A.CastilloR.SunE. I.SaierM. H. The Major Facilitator Superfamily (MFS) Revisited FEBS J. 20122792022– 2035 
  • 2.
    MuecklerM.ThorensB. The SLC2 (GLUT) Family of Membrane Transporters Mol. Aspects Med. 2013,34121– 138 
  • 3.
    AugustinR. The Protein Family of Glucose Transport Facilitators: It’s not Only about Glucose after AllIUBMB Life 201062315– 333 
  • 4.
    KoppenolW. H.BoundsP. L.DangC. V. Otto Warburg’s Contributions to Current Concepts of Cancer Metabolism Nat. Rev. Cancer 201111325– 337 
  • 5.
    ZhaiX.YangY.WanJ.ZhuR.WuY. Inhibition of LDH-A by Oxamate Induces G2/M Arrest, Apoptosis and Increases Radiosensitivity in Nasopharyngeal Carcinoma Cells Oncol. Rep. 2013302983– 2991 DOI: 10.3892/or.2013.2735 
  • 6.
    ParkM. S. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1 PLoS One 2015,10e0125361 DOI: 10.1371/journal.pone.0125361 
  • 7.
    XuR. H.PelicanoH.ZhouY.CarewJ. S.FengL.BhallaK. N.KeatingM. J.HuangP. Inhibition of Glycolysis in Cancer Cells: a Novel Strategy to Overcome Drug Resistance Associated with Mitochondrial Respiratory Defect and Hypoxia Cancer Res. 200565613– 621
  • 8.
    RobeyR. B.HayN. Akt, hexokinase, mTOR: Targeting cellular energy metabolism for cancer therapyDrug Discovery Today: Dis. Mech. 20052239– 246 
  • 9.
    MelstromL. G.SalabatM. R.DingX. Z.MilamB. M.StrouchM.PellingJ. C.BentremD. J.Apigenin Inhibits the GLUT-1 Glucose Transporter and the Phosphoinositide 3-kinase/Akt Pathway in Human Pancreatic Cancer Cells Pancreas 200837426– 431 
  • 10.
    PearsonT. S.AkmanC.HintonV. J.Phenotypic Spectrum of Glucose Transporter Type 1 Deficiency Syndrome (Glut1 DS) Curr. Neurol. Neurosci. Rep. 201313342 
  • 11.
    KlepperJ.WangD.FischbargJ.VeraJ. C.JarjourI. T.O’DriscollK. R.DeVivoD. C. Defective Glucose Transport Across Brain Tissue Barriers: a Newly Recognized Neurological Syndrome Neurochem. Res. 199924587– 594 
  • 12.
    KairaK.SerizawaM.KohY.TakahashiT.YamaguchiA.HanaokaH.OriuchiN.EndoM.OhdeY.;NakajimaT.YamamotoN. Biological Significance of 18F-FDG Uptake on PET in Patients with Non-small-cell Lung Cancer Lung Cancer 201483197– 204 
  • 13.
    ShimB. Y.JungJ. H.LeeK. M.KimH. J.HongS. H.KimS. H.SunD. S.ChoH. M. Glucose Transporter 1 (GLUT1) of Anaerobic Glycolysis as Predictive and Prognostic Values in Neoadjuvant Chemoradiotherapy and Laparoscopic Surgery for Locally Advanced Rectal Cancer Int. J. Colorectal. Dis.201328375– 383 
  • 14.
    AmannT.KirovskiG.BosserhoffA. K.HellerbrandC. Analysis of a Promoter Polymorphism of the GLUT1 Gene in Patients with Hepatocellular Carcinoma Mol. Membr. Biol. 201128182– 186 
  • 15.
    LiuP.LuY.GaoX.LiuR.zhang-NegrerieD.ShiY.WangY.WangS.GaoQ. Highly Water-soluble Platinum(II) Complexes as GLUT Substrates for Targeted Therapy: Improved Anticancer Efficacy and Transporter-mediated Cytotoxic Properties Chem. Commun. (Cambridge, U. K.) 2013492421– 2423
  • 16.
    AdekolaK.RosenS. T.ShanmugamM. Glucose Transporters in Cancer Metabolism Curr. Opin. Oncol.201224650– 654 
  • 17.
    ZhangM.ZhangZ.BlessingtonD.LiH.BuschT. M.MadrakV.MilesJ.ChanceB.GlicksonJ. D.;ZhengG. Pyropheophorbide 2-Deoxyglucosamide: A New Photosensitizer Targeting Glucose TransportersBioconjugate Chem. 200314709– 714 
  • 18.
    LiangJ.ChenY.HuangZ.ZhaoY.HeL. Early Chemotherapy Response Evaluation in Tumors by 99mTc-DTPA-DG Cancer Biother.Radiopharm. 200823363– 370 
  • 19.
    YangD. J.KimC. G.SchechterN. R.AzhdariniaA.YuD. F.OhC. S.BryantJ. L.WonJ. J.;KimE. E.PodoloffD. A. Imaging with 99m Tc ECDG Targeted at the Multifunctional Glucose Transport System Feasibility Study with Rodents Radiology 2003226465– 473 
  • 20.
    DeFeliceL. J. Transporter structure and mechanism Trends Neurosci. 200427352– 359 
  • 21.
    ShimamuraT.WeyandS.BecksteinO.RutherfordN. G.HaddenJ. M.SharplesD.SansomM. S.;IwataS.HendersonP. J.CameronA. D. Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1 Science 2010328470– 473 
  • 22.
    YanN. Structural Advances for the Major Facilitator Superfamily (MFS) Transporters Trends Biochem. Sci.201338151– 159 
  • 23.
    NaftalinR. J. Alternating Carrier Models of Asymmetric Glucose Transport Violate the Energy Conservation Laws Biophys. J. 2008954300– 4314 
  • 24.
    SolcanN.KwokL.FowlerP. W.Alternating Access Mechanism in the POT Family of Oligopeptide Transporters EMBO J. 2012313411– 3421 
  • 25.
    NewsteadS.DrewD.CameronA. D.Crystal Structure of a Prokaryotic Homologue of the Mammalian Oligopeptide-proton Symporters, PepT1 and PepT2 EMBO J. 201130417– 426 
  • 26.
    DangS.SunL.HuangY.LuF.LiuY.GongH.WangJ.YanN. Structure of a Fucose Transporter in an Outward-open Conformation Nature 2010467734– 738 
  • 27.
    YinY.HeX.SzewczykP. Structure of the Multidrug Transporter EmrD from Escherichia coli Science2006312741– 744 
  • 28.
    HuangY. F.LemieuxM. J.SongJ.AuerM.WangD. N. Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli Science 2003301616– 620 
  • 29.
    SunL.ZengX.YanC.SunX.GongX.RaoY.YanN. Crystal Structure of a Bacterial Homologue of Glucose Transporters GLUT1–4 Nature 2012490361– 366 
  • 30.
    CarruthersA.DeZutterJ.GangulyA.DevaskarS. U. Will the Original Glucose Transporter Isoform Please Stand up! Am. J. Physiol. Endocrinol. Metab. 2009297E836– E848 
  • 31.
    CunninghamP.NaftalinR. J. Implications of Aberrant Temperature-sensitive Glucose Transport via the Glucose Transporter Deficiency Mutant (GLUT1DS) T295M for the Alternate-access and Fixed-site Transport Models J. Membr. Biol. 2013246495– 511 
  • 32.
    CunninghamP.NaftalinR. J. Reptation-induced Coalescence of Tunnels and Cavities in Escherichia Coli XylE Transporter Conformers Accounts for Facilitated Diffusion J. Membr. Biol. 20142471161– 1179 
  • 33.
    Salas-BurgosA.IserovichP.ZunigaF.VeraJ. C.FischbargJ. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules Biophys. J. 2004872990– 2999 
  • 34.
    HolyoakeJ.CaulfeildV.BaldwinS. A.SansomM. S. Modeling, Docking, and Simulation of the Major Facilitator Superfamily Biophys. J. 200691L84– L86 
  • 35.
    CunninghamP.Afzal-AhmedI.NaftalinR. J. Docking Studies Show That D-Glucose and Quercetin Slide through the Transporter GLUT1 J. Biol. Chem. 20052815797– 5803 
  • 36.
    DengD.XuC.SunP.WuJ.YanC.HuM.YanN. Crystal Structure of the Human Glucose Transporter GLUT1 Nature 2014510121– 125 
  • 37.
    KoncJ.MillerB. T.ŠtularT.LešnikS.WoodcockH. L.BrooksB. R.Jane?i?D. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites J. Chem. Inf. Model. 2015552308– 2314 
  • 38.
    KoncJ.Janezi?D. ProBiS-Ligands: A Web Server for Prediction of Ligands by Examination of Protein Binding Sites Nucleic Acids Res. 201442W215– W220 
  • 39.
    ThompsonJ. D.HigginsD. G.GibsonT. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res. 1994224673– 4680 
  • 40.
    SaliA.BlundellT. L. Comparative Protein Modelling by Satisfaction of Spatial Restraints J. Mol. Biol.1993234779– 815 
  • 41.
    LaskowskR. A.PROCHECK: a Program to Check the Stereochemical Quality of Protein J. Appl. Crystallogr. 199326283– 291
  • 42.
    LaurieA. T.JacksonR. M. Q-SiteFinder: an Energy-based Method for the Prediction of Protein-ligand Binding Sites Bioinformatics 2005211908– 1916 
  • 43.
    SousaS. F.FernandesP. A.RamosM. J. Protein-ligand Docking: Current Status and Future ChallengesProteins: Struct., Funct., Genet. 20066515– 26 
  • 44.
    HumphreyW.DalkeA.SchultenK. VMD: Visual Molecular Dynamics J. Mol. Graphics 19961433– 38
  • 45.
    PhillipsJ. C.BraunR.WangW.GumbartJ.TajkhorshidE.VillaE.ChipotC.SkeelR. D.KaléL.;SchultenK. Scalable Molecular Dynamics with NAMD J. Comput. Chem. 2005261781– 1802
  • 46.
    CheathamT. E.MillerJ. L.FoxT.DardenT. A.KollmanP. A. Molecular Dynamics Simulations on Solvated Biomolecular Systems: the Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins J. Am. Chem. Soc. 19951174193– 4194 
  • 47.
    RyckaertJ. P.CiccottiG.BerendsenH. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-alkanes J. Comput. Phys. 197723327– 341 
  • 48.
    SchmidtT.BergnerA.SchwedeT. Modelling Three-dimensional Protein Structures for Applications in Drug Design Drug Discovery Today 201419890– 897 
  • 49.
    Abramsonj.SmirnovaI.KashoV.VernerG.KabackH. R.IwataS. Structure and Mechanism of the Lactose Permease of Escherichia coli Science 2003301610– 615 
  • 50.
    PascualJ. M.WangD.YangR.ShiL.YangH.De VivoD. C. Structural Signatures and Membrane Helix 4 in GLUT1: Inferences from Human Blood-Brain Glucose Transport Mutants J. Biol. Chem. 2008,28316732– 16742 
  • 51.
    RotsteinM.EngelstadK.YangH.WangD.LevyB.ChungW. K.De VivoD. C. Glut1 Deficiency: Inheritance Pattern Determined by Haploinsufficiency Ann. Neurol. 201068955– 958 
  • 52.
    BrockmannK.WangD.KorenkeC. G.von MoersA.HoY. Y.PascualJ. M.KuangK.YangH.;MaL.Kranz-EbleP.FischbargJ.HanefeldF.De VivoD. C. Autosomal Dominant Glut-1 Deficiency Syndrome and Familial Epilepsy Ann. Neurol. 200150476– 485 
  • 53.
    PascualJ. M.van HeertumR. L.WangD.EngelstadK.De VivoD. C. Imaging the Metabolic Footprint of Glut1 Deficiency on the Brain Ann. Neurol. 200252458– 464 
  • 54.
    HruzP. W.MuecklerM. M. Structural Analysis of the GLUT1 Facilitative Glucose Transporter (review) Mol. Membr. Biol. 200118183– 193 
  • 55.
    OlsowskiA.MondenI.KrauseG.KellerK. Cysteine Scanning Mutagenesis of Helices 2 and 7 in GLUT1 Identifies an Exofacial Cleft in both Transmembrane Segments Biochemistry 2000392469– 2474
  • 56.
    HruzP. W.MuecklerM. M. Cysteine-scanning Mutagenesis of Transmembrane Segment 11 of the GLUT1 Facilitative Glucose Transporter Biochemistry 2000399367– 9372 
  • 57.
    WeberY. G.StorchA.WuttkeT. V.BrockmannK.KempfleJ.MaljevicS.MargariL.KammC.;SchneiderS. A.HuberS. M.PekrunA.RoeblingR.SeebohmG.KokaS.LangC.KraftE.;BlazevicD.Salvo-VargasA.FaulerM.MottaghyF. M.MünchauA.EdwardsM. J.PresicciA.;MargariF.GasserT.LangF.BhatiaK. P.Lehmann-HornF.LercheH. GLUT1Mutations are a Cause of Paroxysmal Exertion-induced Dyskinesias and Induce Hemolytic Anemia by a Cation Leak J. Clin. Invest.20081182157– 2168 
  • 58.
    QuistgaardE. M.LöwC.MobergP.TrésauguesL.NordlundP. Structural Basis for Substrate Transport in the GLUT-homology Family of Monosaccharide Transporters Nat. Struct. Mol. Biol. 201320,766– 768 

如果我是审稿,肯定会让他们加上大Yan的文章,免得惹上官司:

59.  Yan, RT Cell paper 

60.  Yan, RT PNAS paper

[ 打印 ]
阅读 ()评论 (10)
评论
老泉 回复 悄悄话 又看了一下老阎第一文,他那文章中就断定只他她两个人解开了机理(简单化到喇叭口),而他在先。如果这就是他的知识面,那就没法讨论了。不过这种事情对他不是第一次。有次他写自闭症科普,搞偏了,指出后,撤了博文。
Fanreninus 回复 悄悄话 回复 '老泉' 的评论 : 人就怕执迷不悟。
老泉 回复 悄悄话 看老阎新的发言,还是什么都要,博客,科研成果,诺贝尔奖。忘了他给搞政治的忠告。
Fanreninus 回复 悄悄话 回复 'cowwoman' 的评论 : 哈哈,真是个母牛女人!:)
cowwoman 回复 悄悄话 皇阿哥果真是三宫六院里泡大的。相貌歧视,性别歧视太严重。给大YAN挡回子弹。
老泉 回复 悄悄话 搞科研的可以什么都要,成果及博客。只是搞政治的不能什么都要。
Fanreninus 回复 悄悄话 回复 '老泉' 的评论 : 是的,其实不管是做科研,还是写博都是实在一点好。
老泉 回复 悄悄话 搞科研还是实在的好。
Fanreninus 回复 悄悄话 回复 '雨女' 的评论 : 哈哈,弹药库里还满满的,慢慢地放! :)
雨女 回复 悄悄话 哈哈哈。。子弹太多了,我都不好意思转了。

幸亏我没买华为。虽然拍片片不错。但是,修理点太少。
登录后才可评论.